更多>>精华博文推荐
更多>>人气最旺专家

余智

领域:秦皇岛

介绍:望大家配合,以营造出一个优秀、和谐的班集体!第十学习小组组长整改措施我的职位男厕所负责人我的职责首先,安排好每天的值日生(早、中、下午及晚上),再如实评价和记载该天的卫生情况,管理好清洁工具和班费的开支,不定期地在班上进行生活辅导。...

张南史

领域:第一新闻网

介绍:重要须知:文档投稿赚钱网在此特别提醒,您欲访问和使用文档投稿赚钱网,请事先认真阅读并理解本服务条款中各项内容,包括免除或者限制文档投稿赚钱网责任的免责条款及对您的权利限制;您访问和使用文档投稿赚钱网将被视为同意并接受本服务条款的内容,否则请您放弃访问和使用行为。利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app

利来国际w66.com
本站新公告利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app
lw0 | 2018-12-11 | 阅读(415) | 评论(18)
默读要求小娃撑小艇,娃:男孩儿或女孩儿撑:撑船,用桨使船前进艇:船句意:一个小孩划着小船第一句偷采白莲回。【阅读全文】
利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app
g0t | 2018-12-11 | 阅读(891) | 评论(490)
PAGE第3课时 三角形中的几何计算课后篇巩固探究A组1.在△ABC中,AB=2,BC=5,△ABC的面积为4,则cos∠ABC等于(  )                ±C.-D.±解析由S=AB·BC·sin∠ABC,得4=×2×5sin∠ABC,解得sin∠ABC=,从而cos∠ABC=±.答案B2.某市在“旧城改造”工程中计划在如图所示的一块三角形空地上种植草皮以美化环境.已知这种草皮的价格为a元/m2,则购买这种草皮需要(  )元元解析由已知可求得草皮的面积为S=×20×30sin150°=150(m2),则购买草皮的费用为150a元答案C3.在△ABC中,a,b,c分别为角A,B,C的对边,若2b=a+c,B=30°,△ABC的面积为,则b等于(  )+++3解析由acsin30°=,得ac=6.由余弦定理,得b2=a2+c2-2accos30°=(a+c)2-2ac-3ac=4b2-12-63答案A4.在△ABC中,若AC=3BC,C=π6,S△ABC=3sin2A,则S△ABC=(解析因为AB2=BC2+3BC2-2×BC×3BC×32=BC2,所以A=C=π6,所以S△ABC=3sin2A=答案A5.若△ABC的周长等于20,面积是103,B=60°,则边AC的长是(  )解析在△ABC中,设A,B,C的对边分别为a,b,c,已知B=60°,由题意,得cos60°=a2+c答案C6.已知△ABC的三边分别为a,b,c,且面积S=a2+b2解析在△ABC中,S△ABC=a2而S△ABC=absinC,∴a2+b由余弦定理,得c2=a2+b2-2abcosC,∴cosC=sinC,∴C=45°.答案45°7.已知三角形的面积为,其外接圆面积为π,则这个三角形的三边之积等于     .解析设三角形的外接圆半径为R,则由πR2=π,得R=1.由S=absinC=abc4R=abc答案18.在△ABC中,角A,B,C所对的边分别为a,b,c,求证:ab-b证明由余弦定理的推论得cosB=a2cosA=b2右边=ca=2a2故原式得证.9.如图,在△ABC中,BC=5,AC=4,cos∠CAD=3132,且AD=BD,求△ABC的面积解设CD=x,则AD=BD=5-x.在△CAD中,由余弦定理,得cos∠CAD=42+(5∴CD=1,AD=BD=4.在△CAD中,由正弦定理,得ADsin则sinC=ADCD·1-∴S△ABC=AC·BC·sinC=×4×5×387=154710.导学号04994016若△ABC的三边长分别为a,b,c,面积为S,且S=c2-(a-b)2,a+b=2,求面积S的最大值.解S=c2-(a-b)2=c2-a2-b2+2ab=2ab-(a2+b2-c2).由余弦定理,得a2+b2-c2=2abcosC,∴c2-(a-b)2=2ab(1-cosC),即S=2ab(1-cosC).∵S=absinC,∴sinC=4(1-cosC).又sin2C+cos2C=1,∴17cos2C-32cosC+解得cosC=1517或cosC=1(舍去)∴sinC=817∴S=absinC=417a(2-a)=-417(a-1)2+∵a+b=2,∴0a2,∴当a=1,b=1时,Smax=417B组1.在钝角三角形ABC中,内角A,B,C所对的边分别为a,b,c,已知a=7,c=5,sinC=5314,则△ABC的面积等于(解析在钝角三角形ABC中,∵a=7,c=5,sinC=5314,∴AC,C为锐角,且cosC=1-sin2C=1114.由c2=a2+b2-2abcosC,得b2-11b+24=0,解得b=3或b=8.当b=8时,角B是钝角,cosB=a2+c2-b22ac=49+25-642答案C2.设△ABC的内角A,B,C所对的边分别为a,b,c,且3acosC=4csinA,若△ABC的面积S=10,b=4,则a的值为(  )解析由3acosC=4csinA,得asinA=4c3cosC.又由正弦定理asinA=csinC,得csinC=4c3cosC,∴tanC=,∴答案B3.在△ABC中,ab=60,S△ABC=153,△ABC的外接圆半径为3,则边c的长为    .解析∵S△AB【阅读全文】
eac | 2018-12-11 | 阅读(721) | 评论(612)
大象上船做上记号相同重量的石头换取大象大象下船**4.曹冲称象绿色圃中学资源网妈妈拿来一杆(),去()苹果。【阅读全文】
tfa | 2018-12-11 | 阅读(980) | 评论(202)
 微积分基本定理学习目标重点难点1.会用定积分求曲边梯形的面积.2.直观了解微积分基本定理的含义.重点:微积分基本定理及利用定理求定积分.难点:利用定积分求较复杂的图形的面积.微积分基本定理对于被积函数f(x),如果F′(x)=f(x),则eq\i\in(a,b,)f(x)dx=__________,亦即____________=F(b)-F(a).预习交流1做一做:eq\i\in(0,1,)x2dx=________.预习交流2做一做:eq\i\in(0,π,)(cosx+1)dx=________.预习交流3议一议:结合下列各图形,判断相应定积分的值的符号:(1)eq\i\in(a,b,)f(x)dx____0(2)eq\i\in(a,b,)g(x)dx____0(3)eq\i\in(a,b,)h(x)dx____0在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引F(b)-F(a) eq\i\in(a,b,)F′(x)dx预习交流1:提示:eq\f(1,3)预习交流2:提示:∵(sinx+x)′=cosx+1,∴eq\i\in(0,π,)(cosx+1)dx=eq\i\in(0,π,)(sinx+x)′dx=sinπ+π-(sin0+0)=π.预习交流3:提示:(1)> (2)< (3)>一、简单定积分的求解计算下列各定积分:(1)eq\i\in(0,2,)xdx;(2)(1-t3)dt;(3)eq\i\in(1,2,)eq\f(1,x)dx;(4)(cosx+ex)dx;(5)eq\i\in(2,4,)t2dx;(6)eq\i\in(1,3,)eq\b\lc\(\rc\)(\a\vs4\al\co1(2x-\f(1,x2)))dx.思路分析:根据导数与积分的关系,求定积分要先找到一个导数等于被积函数的原函数,再据牛顿—莱布尼茨公式写出答案,找原函数可结合导数公式表.1.若eq\i\in(0,1,)(2x+k)dx=2,则k=________.2.定积分sin(-x)dx=________.3.求下列定积分的值:(1)eq\i\in(1,2,)eq\r(x)dx;(2)eq\i\in(2,3,)eq\f(1-x,x2).微积分基本定理是求定积分的一种基本方法,其关键是求出被积函数的原函数,特别注意y=eq\f(1,x)的原函数是y=.求定积分时要注意积分变量,有时被积函数中含有参数,但它不一定是积分变量.3.定积分的值可以是任意实数.二、分段函数与复合函数定积分的求解计算下列定积分:(1)eq\i\in(2,5,)|x-3|dx;(2)sin2xdx;(3)e2xdx思路分析:被积函数带绝对值号时,应写成分段函数形式,利用定积分性质求解.当被积函数次数较高时,可先进行适当变形、化简,再求解.1.设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,0≤x1,,2-x,1x≤2,))则eq\i\in(0,2,)f(x)dx=__________.2.(1)设f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x2,x≤0,,cosx-1,x0,))求f(x)dx;(2)求eq\r(x2)dx(a>0).1.分段函数在区间[a,b]上的积分可化成几段积分之和的形式,分段时按原函数的各区间划分即可.2.当被积函数的原函数是一个复合函数时,要特别注意原函数的求解,与复合函数的求导区分开来.例如:对于被积函数y=sin3x,其原函数应为y=-eq\f(1,3)cos3x,而其导数应为y′=3cos3x.三、由一条曲线和直线所围成平面图形的面积的求解已知抛物线y=4-x2.(1)求该抛物线与x轴所围成图形的面积;(2)求该抛物线与直线x=0,x=3,y=0所围成图形的面积.思路分析:画出图形,结合图形分析定积分的积分区间,同时注意面积与积分的关系.1.抛物线y=x2-x与x轴围成的图形面积为__________.2.曲线y=cosxeq\b\lc\(\rc\)(\a\vs4\al\co1(0≤x≤\f(3π,2)))与坐标轴所围成的面积为________.3.(2012山东高考)设a>0.若曲线y=eq\r(x)与直线x=a,y=0所围成封闭图形的面积为a2,则a=__________.利用定积分求曲线所围成的平面图形的面积的步骤:(1)根据题意画出图形;(2)找出范围,定出积分上、下限【阅读全文】
9ef | 2018-12-11 | 阅读(166) | 评论(265)
副县长个人工作总结个人总结,就是把一个时间段的个人情况进行一次全面系统的总检查、总评价、总分析、总研究,分析成绩、不足、经验等。【阅读全文】
obd | 2018-12-10 | 阅读(455) | 评论(187)
 最大值与最小值学习目标重点难点1.知道函数的最大值与最小值的概念.2.能够区分函数的极值与最值.3.会用导数求闭区间上不超过三次的多项式函数的最大值、最小值.重点:函数在闭区间上的最值的求解.难点:与函数最值有关的参数问题.1.最大值与最小值(1)如果在函数定义域I内存在x0,使得对任意的x∈I,总有______________,则称f(x0)为函数在定义域上的最大值.最大值是相对函数定义域整体而言的,如果存在最大值,那么最大值________.(2)如果在函数定义域I内存在x0,使得对任意的x∈I,总有____________,则称f(x0)为函数在定义域上的最小值.最小值是相对函数定义域整体而言的,如果存在最小值,那么最小值________.2.求f(x)在区间[a,b]上的最大值与最小值的步骤(1)求f(x)在区间(a,b)上的________;(2)将第(1)步中求得的________与______,______比较,得到f(x)在区间[a,b]上的最大值与最小值.预习交流1做一做:函数y=x-sinx,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))的最大值是______.预习交流2做一做:函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为______.预习交流3(1)函数的极值与最值有何区别与联系?(2)如果函数f(x)在开区间(a,b)上的图象是连续不断的曲线,那么它在(a,b)上是否一定有最值?若f(x)在闭区间[a,b]上的图象不连续,那么它在[a,b]上是否一定有最值?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)f(x)≤f(x0) 惟一 (2)f(x)≥f(x0) 惟一2.(1)极值 (2)极值 f(a) f(b)预习交流1:提示:∵y′=1-cosx≥0,∴y=x-sinx在eq\b\lc\[\rc\](\a\vs4\al\co1(\f(π,2),π))上是增函数,∴ymax=π.预习交流2:提示:∵f′(x)=3x2-3a=3(x2-af(x)在(0,1)内有最小值,∴方程x2-a=0有一根在(0,1)内,即x=eq\r(a)在(0,1)内,∴0<eq\r(a)<1,0<a<1.预习交流3:提示:(1)①函数的极值是表示函数在某一点附近的变化情况,是在局部上对函数值的比较,具有相对性;而函数的最值则是表示函数在整个定义区间上的情况,是对整个区间上的函数值的比较,具有绝对性.②函数在一个闭区间上若存在最大值或最小值,则最大值或最小值只能各有一个,具有惟一性;而极大值和极小值可能多于一个,也可能没有,例如:常函数就没有极大值,也没有极小值.③极值只能在函数的定义域内部取得,而最值可以在区间的端点取得.有极值的不一定有最值,有最值的不一定有极值,极值有可能成为最值,最值只要不在端点处则一定是极值.(2)一般地,若函数f(x)的图象是一条连续不断的曲线,那么f(x)在闭区间[a,b]上必有最大值和最小值.这里给定的区间必须是闭区间,如果是开区间,那么尽管函数是连续函数,那么它也不一定有最大值和最小值.一、求函数在闭区间上的最值求下列函数的最值:(1)f(x)=-x3+3x,x∈[-eq\r(3),eq\r(3)];(2)f(x)=sin2x-x,x∈eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(π,2),\f(π,2))).思路分析:按照求函数最值的方法与步骤,通过列表进行计算与求解.1.函数f(x)=x3-2x2+1在区间[-1,2]上的最大值与最小值分别是__________.2.求函数y=5-36x+3x2+4x3在区间[-2,2]上的最大值与最小值.1.求函数在闭区间上的最值时,一般是先找出该区间上使导数为零的点,无需判断出是极大值还是极小值,只需将这些点对应的函数值与端点处的函数值比较,其中最大的是最大值,最小的是最小值.2.求函数在闭区间上的最值时,需要对各个极值与端点函数值进行比较,有时需要作差、作商,有时还要善于估算,甚至有时需要进行分类讨论.二、与最值有关的参数问题的求解已知当a>0时,函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29,求a,b的值.思路分析:先求出函数f(x)在[-1,2]上的极值点,然后与两个端点的函数值进行比较,建立关于a,b的方程组,从而求出a,b的值.若函数f(x)=-x3+3x2+9x+a在区间[-2,2]上的最大值为20,求它在该区间上的最小值.【阅读全文】
0re | 2018-12-10 | 阅读(202) | 评论(951)
3、测量一种物质的密度,一般需要测量它的和。【阅读全文】
w8t | 2018-12-10 | 阅读(600) | 评论(580)
例如教学繁忙阶段可能会出现暂时放下党建工作的情况。【阅读全文】
利来国际app,利来国际app,利来国际app,利来国际app,利来国际app,利来国际app
xh9 | 2018-12-10 | 阅读(13) | 评论(279)
按照不同的标准,泡沫混凝土大致可分为以下几种类型(如表所示):表泡沫混凝土的分类分类标准泡沫混凝土种类水泥泡沫混凝土、菱镁泡沫混凝土、石膏泡沫混凝土和火组成中胶结材料山灰质泡沫混凝土所用主要填充料的种类粉煤灰泡沫混凝土、矿粉泡沫混凝土、秸秆泡沫混凝土等干表观密度B03、B04、B05、B06、B07、B08、B09、B10八个等级保温型泡沫混凝土、保温结构型泡沫混凝土和结构型泡沫使用功能混凝土【阅读全文】
pbb | 2018-12-09 | 阅读(688) | 评论(721)
敷设天然气管道的舱室,逃生口间距不宜大于200m。【阅读全文】
zp9 | 2018-12-09 | 阅读(775) | 评论(871)
一、主要问题到法院上班近两年的时间里,在院党组、办室领导和同志们的帮助下,虽然做了一些工作,较为认真地完成了领导交办、本职范围内的工作,但是对照思想作风整顿活动查摆问题阶段的实施方案还存在不少问题,如在思想政治素质、业务理论水平、工作能力等方面还不能完全适应新形势、新任务的要求,主要有以下几个方面一是理论学习不主动,自觉性不高。【阅读全文】
rec | 2018-12-09 | 阅读(381) | 评论(718)
这次研修班的培训,我更意识到教育不应该是空中楼阁,它应该是立足于生活的。【阅读全文】
8jd | 2018-12-09 | 阅读(164) | 评论(295)
图中A地、B地的地貌分别为、,从内外力作用的角度分别说明它们形成的主要过程。【阅读全文】
b8h | 2018-12-08 | 阅读(649) | 评论(151)
水至清则无鱼,与其对版权的归属问题争个你死我活,还不如干脆睁一只眼闭一只眼,心里也没那么多烦劳。【阅读全文】
9mg | 2018-12-08 | 阅读(842) | 评论(937)
(一)强化对经济工作的监督。【阅读全文】
共5页

友情链接,当前时间:2018-12-11

w66.利来国际 利来国际w66.com 利来国际w66客服 利来国际app w66利来guoji
利来国际旗舰厅 利来国际w66利来国际w66 利来娱乐国际最给利老牌网站是什么 w66.利来国际 利来国际网站
利来国际备用 w66.com利来国际 利来国际最给利的老牌 利来娱乐网址 利来娱乐国际
利来国际娱乐老牌 利来娱乐 利来客服 利来国际娱乐老牌 利来国际娱乐
东安县| 张掖市| 葫芦岛市| 虞城县| 黔江区| 平山县| 酒泉市| 合肥市| 黎平县| 南京市| 兴文县| 成安县| 金平| 三江| 贺兰县| 武定县| 吉首市| 阳谷县| 宁明县| 克东县| 高台县| 嘉定区| 淄博市| 德令哈市| 桦南县| 天台县| 秦皇岛市| 蒙自县| 望城县| 古蔺县| 礼泉县| 莱阳市| 泽普县| 勃利县| 剑川县| 临夏县| 四川省| 元阳县| 清镇市| 浦江县| 慈溪市| http:// http:// http:// http:// http:// http://